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Abstract

E�cient structural optimization routines require availability of gradient information. Semi-analytical (SA) design

sensitivities are rather popular, as they combine ease of implementation with computational e�ciency. Their main

drawback however, is their well-known inaccuracy problem for shape design sensitivities. It was found that the inac-

curacies are especially unacceptable for slender structures and become more pronounced when relatively large rigid

body motions can be identi®ed for individual ®nite elements. Based on these observations, the authors recently de-

veloped a re®ned SA method taking full advantage of analytical di�erentiation of rigid body modes. The present article

presents a sound and uni®ed formulation of re®ned semi-analytical (RSA) design sensitivities for linear, linearized

buckling, geometrically nonlinear and limit point analyses. Numerical results are presented in order to demonstrate the

e�ciency of the proposed method. It is concluded that the re®ned SA method possesses the advantages of the tradi-

tional SA method, whereas it does not exhibit its unacceptable inaccuracies. Ó 2000 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Design and optimization processes may require accurate information on design sensitivities, i.e. infor-
mation on the derivatives of response functions, such as stresses, strains and displacements, with respect to
independent design variables. As the ®nite element (FE) method is nowadays a commonly used tool for
analysing design alternatives, procedures for e�cient and accurate evaluation of design sensitivities should
complement existing FE packages.

In the literature, many approaches towards design sensitivity analysis can be found. The simplest among
them is based on global ®nite di�erence (GFD) schemes. Implementation is easy and straightforward, but
costs of computation can be high. Application of higher-order ®nite di�erence schemes is generally hin-
dered by the computing costs involved. A further drawback is the required selection of design perturba-
tions. Finally, the method's sensitivity to round-o� errors is mentioned.

Design sensitivities on the basis of variational and analytical approaches do not su�er from the above-
mentioned drawbacks, i.e. computational e�ciency is good and a selection of the design perturbation is not
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needed. Typical examples can be found in Mr�oz and Haftka (1994) and Kleiber and Hien (1997). For-
mulation and implementation of these approaches are often involved.

As a compromise between global ®nite di�erence approaches and variational or analytical formulations,
the so-called semi-analytical (SA) design sensitivities have been proposed; see Haftka and Adelman (1989)
and the references given therein. Common feature of SA formulations is that their formulation starts
analytically. In this way, design sensitivities are expressed in terms of (global) operators, e.g. the inverse of
the tangent operator, and partial derivatives of quantities at the element level. In an SA formulation, the
latter are replaced by ®nite di�erence approximations. This implies that design perturbations are still re-
quired. However, globally, the formulation bene®ts from an analytical approach, leading to computational
e�cient algorithms. Application of higher-order ®nite di�erence schemes at the element level requires, in
contrast to GFD procedures, modest additional e�ort, both in terms of implementation and in terms of
computing times. Implementation of SA design sensitivities in an existing FE code is easy. Often, the
implementation can to a large extent be based on routines already available for structural analyses.

Early applications of SA design sensitivities indicated severe accuracy problems for shape design vari-
ables, see, e.g., Barthelemy et al. (1988) and Barthelemy and Haftka (1988). The accuracy of SA design
sensitivities has been studied in the linear regime in a number of papers (Barthelemy and Haftka, 1988;
Cheng et al., 1989; Pedersen et al., 1989; Fenyes and Lust, 1991; Olho� and Rasmussen, 1991). These
studies revealed that inaccuracies become more pronounced for slender structures and when FE meshes are
re®ned. Depending on mesh density, slenderness of the structure and actual deformation pattern, the range
of design perturbations leading to accurate design sensitivities may become small. Therefore, selection of
design perturbation may become di�cult and not suited for automated procedures. It was concluded, that
the observed complications are associated with both the ®nite di�erences used at element level and the rigid
body rotations of the individual elements, see Barthelemy et al. (1988) and Cheng and Olho� (1993).

A number of improvements have been proposed in order to achieve accurate SA design sensitivities for a
large range of design perturbations. In Barthelemy and Haftka (1988), Cheng et al. (1989) and Olho� and
Rasmussen (1991) application of higher-order ®nite di�erence schemes has been studied. Although a better
accuracy is obtained, the source of the accuracy problems has not been removed, but the accuracy problem
has been alleviated. This can be demonstrated easily using the beam example studied in Barthelemy et al.
(1988), Barthelemy and Haftka (1988), Pedersen et al. (1989), Olho� and Rasmussen (1991) and De Boer
and Van Keulen (1997a). Following De Boer and Van Keulen (1997a), but using higher-order ®nite dif-
ference schemes, it follows that a strong dependence on the number of elements can still be observed. Thus,
an application of higher-order ®nite di�erence schemes does not provide a rigorous solution to the accuracy
problems observed.

Mlejnek (1992) explored the ``natural approach'' (Argyris and Mlejnek, 1986) to conserve consistency
conditions for the rigid body rotations within the applied ®nite di�erence scheme. The method has been
described for linear structural analyses. A combination with arbitrary ®nite di�erence schemes has not been
addressed.

The so-called ``exact'' semi-analytical formulation (Olho� et al., 1993) leads to exact derivatives. The
method relies on speci®c features of the governing element matrices. ``Exact'' SA formulations have been
applied for linear statics (Olho� et al., 1993; Hinton et al., 1995), linearized buckling and free vibrations
(Lund and Olho�, 1994).

For linear structural analyses, the authors (Van Keulen and De Boer, 1998a) have proposed re®ned
semi-analytical (RSA) design sensitivities. The underlying idea is to identify the rigid body modes of in-
dividual ®nite elements. These rigid body modes can be easily di�erentiated analytically with respect to the
design variables. Consequently, the RSA formulation combines analytical derivatives with ®nite di�erences.
In this way, the severe inaccuracies can be eliminated rigorously. This method has been studied analytically
on the basis of the well-known beam example in De Boer and Van Keulen (1997a). This study revealed that
results for the beam example are independent of the mesh density. Several advantages of the RSA method
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can be mentioned. Firstly, it is easy to implement. Secondly, associated computational e�orts are limited
and, ®nally, the RSA method can be combined straightforwardly with arbitrary ®nite di�erence schemes.

Extension of the RSA formulation to linearized buckling has been discussed in Van Keulen and De Boer
(1998b). Both numerical and analytical results have been presented, showing rigorous improvement of the
accuracy. In De Boer and Van Keulen (1997b), a ®rst attempt has been made to apply the RSA concept to
geometrically nonlinear problems. The formulation lacks soundness as it has been formulated analogous to
the linear formulation (Van Keulen and De Boer, 1998a).

The objective of the present article is to present RSA design sensitivities for a variety of structural
analyses in a uni®ed and sound formulation. Its application will be focused on geometrically nonlinear, limit
point, linear and linearized buckling analyses. Apart from the formulation, aspects of implementation will
be highlighted. The bene®ts of the RSA approach will be studied on the basis of a number of examples.

The layout of the present article is as follows: In Section 2, governing FE equations are discussed. In
addition, rigid body motions and some of their properties will be reviewed. Special attention will be given to
consistency conditions related to the rigid body modes and their partial derivatives. Section 3 addresses
both SA and RSA design sensitivities for nonlinear, limit point, linear and linearized buckling analyses.
Aspects of implementation are discussed in Section 4. Numerical examples are presented in Section 5. All
numerical examples involve thin-walled structures and are modelled using the shell element reported in Van
Keulen and Booij (1996). A ®nal discussion and conclusions are subject of Section 6.

Throughout the present article, matrices will be denoted using bold capitals, e.g. A. Vectors and one-
dimensional arrays are referred to by bold lower-case characters, e.g. a. It will be necessary to distinguish
between quantities at system level and those corresponding to individual elements. This will be achieved by
a superscript e for quantities corresponding to a single element. As an example, u refers to all nodal degrees
of freedom, whereas ue denotes the nodal degrees of freedom of a particular element. A partial derivative
with respect to an arbitrary variable b, will be denoted . . .;b. Total derivatives are expressed as d . . . =db.

The proposed RSA design sensitivities are applicable to every possible set of independent design vari-
ables s. In order to simplify formulation and notation, focus will be on an arbitrary element s from the set s.
It is emphasized, that this does not impose any restriction on the formulation.

2. Preliminaries

In the present section, relevant FE characteristics are considered. In Section 2.1, the governing FE
equations will be summarized. Rigid body modes corresponding to individual ®nite elements are reviewed
in Section 2.2.

2.1. Governing ®nite element equations

At the element level, generalized deformations �e can be expressed as functions of the nodal degrees of
freedom ue and a set of design variables s. Thus,

�e � �e�ue; s�: �1�
The generalized deformations are typically nonlinear in terms of both nodal degrees of freedom and

design variables. It is important to emphasize that nodal degrees of freedom are implicit functions of design
variables. In order to maintain a compact formulation, this implicit dependence is not expressed in the
formulae.

Generalized stresses, energetically conjugated to �e, will be denoted re. In the case of linear elasticity,
generalized stresses are determined by
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re � De�s��e: �2�
The matrix De depends on the material properties, the design variables and the actual element at hand.

With Eq. (1), the virtual work of deformation reads

dWint �
X

dW e
int �

X
reT d�e �

X
reT Be due � fT du; �3�

where Be is de®ned as

Be�ue; s� � �e
;ue : �4�

Notice that evaluation of dWint requires volume integrations for the individual elements. These integrations
have been entirely incorporated by proper and consistent de®nitions of the generalized stresses and de-
formations and the corresponding De and Be matrices.

The load following from the discretized equations of equilibrium and the generalized stresses is denoted
f�u; s�. f is often referred to as the ``internal load vector'' and is evaluated on the basis of the individual
element contributions

fe � BeTre: �5�
The applied load will be denoted p and may depend on both nodal degrees of freedom and design

variables. Moreover, it is often convenient to scale the applied load with a load parameter k. The corre-
sponding virtual work reads

dWext � p�k; u; s�Tdu: �6�
With the principle of virtual work, it follows from Eqs. (3) and (6) that

f�u; s� � p�k; u; s�; �7�
which are the well-known equations of equilibrium.

After the introduction of a monotonously increasing quantity s, which could be identi®ed as a control
variable (Riks, 1997), rate equations follow from (2)±(7) as

J
du

ds
� p;k

dk
ds
: �8�

The Jacobian J is assembled from individual element contributions Je, which are given by

Je � Ke �Ge ÿ pe
;ue : �9�

Here Ke and Ge are given by

Ke � BeTDeBe; �10�

Ge � reTBe
;ue �11�

and refer to the physical and geometrical sti�ness, respectively.

2.2. Rigid body modes

For the present article, it is essential to de®ne for each element a basis for all possible rigid body modes.
In the actual con®guration, a rigid body mode qe is characterized by the fact that the corresponding de-
formation rates are zero. With Eqs. (1) and (4) this can be formulated as

Beqe � 0: �12�
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It is emphasized that Be is a function of the nodal degrees of freedom and the rigid body modes are
de®ned for the actual con®guration. Provided no spurious energy modes are available, the space of rigid
body modes corresponds to the kernel of the linear mapping represented by Be. At this point, an orthogonal
basis fre

k�ue; s�g is introduced for the kernel of this mapping. Index k ranges from one to the number of
independent rigid body modes to be described by the element under consideration.

As the basis vectors re
k satisfy Eq. (12) for any con®guration �ue; s�, di�erentiation of Bere

k � 0 with re-
spect to ue leads to a ®rst consistency condition

�Bere
k�;ue � 0: �13�

Similarly, di�erentiation with respect to the design variable s yields

�Bere
k�;ue

due

ds
� �Bere

k�;s � 0: �14�

By combining Eqs. (13) and (14), it follows

Be
;sr

e
k � Bere

k;s � 0; �15�
which provides a second consistency equation for the basis vectors re

k.
For the present article, a more careful inspection of the second consistency equation is of crucial im-

portance. Partial derivatives of Be can be evaluated analytically, but their derivation and implementation
can be tedious. In contrast to this observation, partial derivatives of re

k can easily be evaluated analytically.
Moreover, these derivatives can be evaluated without information on the precise formulation of the element
at hand. More details on construction of the basis fre

kg and corresponding derivatives will be given in
Section 4.

The basis vectors re
k will be used in two ways: Firstly, they are used to decompose arbitrary nodal ve-

locities into a deformational and a rigid body component. To be more precise, for linear analyses, the nodal
displacements and the nodal rotations will be decomposed. For linearized buckling analyses the buckling
modes will be decomposed at the element level. A similar approach will be followed for limit point analyses,
whereas it seems not applicable to nonlinear analyses. Secondly, the basis vectors will be invoked to de-
compose pseudo-loads into a self-equilibrating component and one which is not. For these purposes, it is
convenient to introduce a matrix Se, which is de®ned as

Se �
X

k

re
kreT

k

reT
k re

k

: �16�

Assuming nodal velocities ve, the component of ve along re
k is given by �reT

k re
k�ÿ1�reT

k ve�re
k, where �reT

k re
k�ÿ1

accounts for the fact that the basis vectors re
k are mutually orthogonal, but nonnormalized. Consequently,

the entire rigid body component contained by ve follows as Seve. If qe refers to an arbitrary load acting on
an element, then Seqe represents the load component which is not self-equilibrating. This is seen from the
fact that qe ÿ Seqe represents the self-equilibrating component of qe. The latter observation can be proven
using the principle of virtual work together with a virtual displacement ®eld containing rigid body modes
only and the fact that reT

k �qe ÿ Seqe� � 0. In addition to Se, a matrix Fe is introduced as

Fe � Iÿ Se: �17�
This matrix can be used in a similar manner as Se to extract the deformational velocity component or the
self-equilibrating load component, respectively. Note that both Se and Fe are symmetric.

The partial derivatives of Fe and Se with respect to a design variable s are given by

Fe
;s � ÿSe

;s � �F
e ��F

eT � 2
X
�reT

k;s
re

k�
re

kreT
k

�reT

k re
k�2

: �18�

H. de Boer, F. van Keulen / International Journal of Solids and Structures 37 (2000) 6961±6980 6965



Here �F
e

refers to a pseudo-gradient, which is de®ned as

�F
e � ÿ

X
k

re
k;s

reT

k

reT

k re
k

: �19�

Note that �F
e

is non-symmetric. With the de®nitions (16) and (19) and consistency equation (15), it is easy to
verify that

Be
;sS

e � Be�F
e
: �20�

This consistency equation will be used frequently to replace partial derivatives of Be by partial derivatives of
re

k.

3. Design sensitivities

In order to achieve a general starting point, it is assumed that the load parameter k can be a function of
the design variables. In this case, a straightforward di�erentiation of the equations of equilibrium (7) with
respect to s yields

J
du

ds
ÿ p;k

dk
ds
� p;s ÿ f ;s: �21�

Here, use has been made of the fact that f ;u ÿ p;u � J, where J denotes the Jacobian, see also Eqs. (8) and
(9).

The above result will be the starting point for the discussion of both SA and RSA design sensitivities.
Design sensitivities in case of geometrical non-linearities are considered in Section 3.1. Limit loads are dealt
with in Section 3.2. The linear equivalents of Sections 3.1 and 3.2 are given in Sections 3.3 and 3.4, re-
spectively.

3.1. Geometrically nonlinear analysis

When the load parameter is independent of the design variables, Eq. (21) reduces to

J
du

ds
� p;s ÿ f ;s: �22�

This result is well known and can also be found in Haftka (1993), among others. The term p;s ÿ f ;s is often
referred to as the pseudo-load. Displacement sensitivities for geometrically nonlinear responses follow di-
rectly from Eq. (22) as

du

ds
� Jÿ1�p;s ÿ f ;s�: �23�

Here, regularity of the Jacobian matrix J is assumed, which implies that Eq. (23) is not applicable to
stability points.

In a traditional SA method, partial derivatives in Eq. (23) are evaluated on the basis of ®nite di�erences.
Notice that f ;s can be obtained by applying ®nite di�erence approximations either at the system or the
element level. If evaluated at the element level, corresponding contributions become

fe
;s � BeT

;s re � BeTre
;s; �24�

which follows from Eq. (5). As mentioned in Section 1, it was found for linear problems that severe in-
accuracies of SA shape design sensitivities originate from replacing fe

;s by its ®nite di�erence approximation.
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These inaccuracies are strongly in¯uenced by the design perturbation Ds used to evaluate the ®nite dif-
ference approximations. Similar approximations applied to p;s did not give rise to accuracy problems.
Further, it was shown that inaccuracies may become severe if the components representing the rigid body
rotations contained in the vector of nodal degrees of freedom are large as compared to the corresponding
deformation component.

To achieve more accurate SA design sensitivities, the right hand side of Eq. (24) is inspected more
precisely. The ®rst term gives a contribution which might not be self-equilibrating. The second term,
however, yields a self-equilibrating contribution to the pseudo-load, as reT

k BeTre
;s � 0 for all possible k.

Referring to Saint±Venant's principle, it should be expected that errors introduced by the ®nite di�erence
approximations to re

;s tend to damp out. This in contrast to errors introduced by ®nite di�erence ap-
proximations to Be

;s. Therefore, BeT
;s re will be decomposed into a self-equilibrating component and one

which is not. Thus, with reference to Eq. (16) and using Eq. (17), Eq. (24) becomes

fe
;s � SeBeT

;s re � FeBeT
;s re � BeTre

;s: �25�
Examining this result, it is seen that only the ®rst term in the right hand side gives a contribution which is
not self-equilibrating. Applying consistency condition Eq. (20), this term can be replaced by one which only
involves partial derivatives of re

k:

fe
;s � �F

eT
BeTre � FeBeT

;s re � BeTre
;s: �26�

In the RSA formulation, partial derivatives of re and Be are evaluated using ®nite di�erence approxima-
tions at element level. Components of �F

e
are computed by taking full advantage of analytical derivatives

re
k;s

. Consequently, errors introduced by the ®nite di�erence approximations are of a self-equilibrating
nature and their e�ect damps out.

For many purposes, strain and stress sensitivities are required. For that purpose Eq. (1) is di�erentiated
with respect to s, leading to

d�e

ds
� Be due

ds
� �e

;s: �27�

Using Eq. (2), the stress sensitivities become

dre

ds
� De

;s�
e �De d�e

ds
: �28�

Again, ®nite di�erences are applied to obtain �e
;s and De

;s, whereas due=ds and d�e=ds follow from Eqs. (23)
and (27), respectively. The di�erence between SA and RSA strain sensitivities is that the RSA method
evaluates due=ds by using Eq. (26), whereas the traditional SA method uses Dfe=Ds.

3.2. Limit points

A stability point is characterized by a singular Jacobian matrix J, see for more details Riks (1997) and
references given therein. The singularity is also re¯ected by a zero eigenvalue for J. In the sequel, it is
assumed that the zero eigenvalue of J is distinct and complications related to multiple eigenvalues are not
addressed here. Moreover, it is assumed that the Jacobian matrix is symmetric. A stability point
�u � uc; k � kc� can now be characterized by

Jcv � 0; �29�
where v denotes the eigenvector associated with the zero eigenvalue. The subscript c indicates evaluation for
�uc; kc�.
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If it is now assumed, that k is controlled in such a way that it always corresponds to k � kc, then Eq. (21)
can be written as

Jc
duc

ds
ÿ �p;k�c

dkc

ds
� �p;s ÿ f ;s�c: �30�

It is often the case that the only design sensitivities that are relevant are those for kc. For that reason, Eq.
(30) is pre-multiplied by vT, which gives together with Eq. (29) (Wu and Arora, 1987, 1988; Haftka, 1993)

dkc

ds
� ÿ vT�p;s ÿ f ;s�c

vT�p;k�c
: �31�

It is emphasized that Eq. (31) is not applicable to bifurcation points, as for a bifurcation point vT�p;k�c
becomes zero, see, e.g. Riks (1997).

In an SA formulation the terms �p;s�c and �f ;s�c are approximated using ®nite di�erences, either at the
system or the element level. Here, the focus will be on element level. In this case, �fe

;s�c will be evaluated
using a ®nite di�erence approximation to Eq. (24) for �uc; kc�. An RSA formulation is obtained if �fe

;s�c is
calculated on the basis of Eq. (26). In this way, the RSA formulation is based on a decomposition of �fe

;s�c
into a self-equilibrating component and one which is not. An alternative starting point for the RSA for-
mulation is to decompose ve into a deformational and a rigid body component. This approach, in com-
bination with consistency condition Eq. (20), leads to exactly the same RSA formulation as obtained
directly on the basis of Eq. (26).

3.3. Linear analysis

Linear problems are governed by the well-known relation p0 � K0u. Here, a subscript 0 indicates
evaluation for u � 0. The design sensitivities for the nodal degrees of freedom follow as (Haftka and
Adelman, 1989)

du

ds
� Kÿ1

0 p0;s

ÿ ÿ K0;su
�
: �32�

Notice that for any quantity a�u; s�, it follows da0=ds � a0;s. In an SA formulation, the derivatives K0;s are
approximated using ®nite di�erences.

As mentioned, severe inaccuracies were shown to originate from replacing K0;s by its ®nite di�erence
approximation. Focus will therefore be on f ;s � K0;su, which will be assembled from individual element
contributions fe

;s � Ke
0;su

e. Before starting a re®ned formulation, it is noted that, analogous to consistency
condition Eq. (20), the following consistency equation has to be satis®ed

Ke
0;sS

e
0 � Ke

0
�F

e

0 �33�
in the linear regime. This relation is easily veri®ed using Eqs. (10), (12), (16) and (19). Similar to the RSA
formulation for nonlinear analyses given in Section 3.1, the contribution fe

;s is decomposed into a self-
equilibrating component and one which is not. Together with consistency condition (33), this decompo-
sition yields

fe
;s � �F

eT

0 Ke
0ue � F

e

0Ke
0;su

e: �34�
The ®rst term in the right hand side of Eq. (34) can be evaluated analytically, provided analytical deriv-
atives for rigid body modes are available. The second term in the right hand side of Eq. (34) is self-
equilibrating. In the nonlinear formulation, the calculation of �e

;s involves the calculation of the generalized
deformations in the con®guration �ue; s� Ds�. In the linear formulation, this is not done explicitly, as use is
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made of a linearization in the con®guration �ue � 0�. This aspect is ®nally re¯ected by a somewhat di�erent
composition of the contribution to the pseudo-load vector, compare Eqs. (26) and (34). In the present case,
however, the second term in the right hand side of Eq. (34) permits a further improvement. For this
purpose, ue is decomposed into a deformational and a rigid body component. In addition, this decom-
position is simple in the linear regime, as ue can be projected directly on re

k, which is not permitted in the
nonlinear regime involving ®nite rotations. With this decomposition, Eq. (17), consistency condition (33),
and Ke

0Se
0 � 0 it follows

fe
;s � �F

eT

0 Ke
0ue � Ke

0
�F

e

0ue � Fe
0Ke

0;sF
e
0ue: �35�

Both the ®rst and second term can be evaluated accurately using analytical derivatives for the rigid body
modes. In the RSA formulation, the last term in the right hand side of Eq. (35) will be approximated by
means of ®nite di�erences. Note that the associated errors only depend on the deformational component of
ue, rather than on ue. Moreover, the error contribution is self-equilibrating. Hence, referring to Saint-
Venant's principle, the e�ects caused by the error contribution corresponding to a single element tends to
damp out. This in contrast to a direct application of Ke

0;su
e, for which the associated errors might spread

over the entire domain of the ®nite element model used.
Once having obtained du=ds, design sensitivities for strains and stresses can be evaluated at element level.

The generalized strains are determined from a linearization of Eq. (1)

�e � Be
0ue: �36�

Consequently, strain sensitivities for linear analyses are determined by

d�e

ds
� Be

0

due

ds
� Be

0;su
e: �37�

In an SA formulation, Be
0;s is approximated using ®nite di�erences. Corresponding stress sensitivities are

evaluated using Eq. (28). RSA strain sensitivities start from a decomposition of ue. Thus, �e � Be
0ue is

replaced by �e � Be
0Fe

0ue, which, by a straightforward di�erentiation and application of Eq. (18), leads to

d�e

ds
� Be

0

due

ds
� Be

0
�F

e

0ue � Be
0;sF

e
0ue: �38�

This expression is evaluated using ®nite di�erence approximations for the last term. Errors introduced by
these approximations are now only multiplied by the deformational component of ue, this in contrast to Eq.
(37) for which the errors are multiplied by ue.

The RSA formulation for linear structural analyses was ®rst proposed in Van Keulen and De Boer
(1998a) and studied analytically in De Boer and Van Keulen (1997a). The formulations given here and in
Van Keulen and De Boer (1998a) are essentially the same. However, there are three important aspects that
motivated the detailed discussion given above. Firstly, stress and strain sensitivities were not addressed in
Van Keulen and De Boer (1998a). As these require more attention in an RSA formulation, they have been
included here. A second, more fundamental, aspect is that the present formulation is entirely consistent
with the approach followed for the nonlinear regime. For this reason, the starting point for the RSA
formulation had to be selected di�erently. To be more precise, the present formulation started with a
decomposition of the pseudo-load vector, whereas a decomposition of the nodal degrees of freedom was the
starting point in Van Keulen and De Boer (1998a). Finally, in Van Keulen and De Boer (1998a) the de-
composition of the pseudo-load vector into a self-equilibrating component and one which is not, was not
apparent at all. Being aware of the consequences of this decomposition, results in a better understanding of
the actual nature of the proposed re®nements and the origin of the severe inaccuracies associated with SA
design sensitivities.
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3.4. Linearized buckling

In structural optimization, stability aspects are often of primary importance. For this reason and
completeness of the present article, RSA design sensitivities for linearized buckling are summarized here.
For more details and an analytical study, the reader is referred to Van Keulen and De Boer (1998b).

A linear pre-buckling solution is assumed. In this case, buckling analysis is governed by the eigenvalue
problem

K0� � lG0�v � 0: �39�
Here G0 is the geometrical sti�ness corresponding to the pre-buckling solution. To reach a critical load
level, the applied load must be scaled with the eigenvalue l. The corresponding buckling mode is denoted
by v. It is assumed that the eigenvalues are distinct. For an overview of multiple eigenvalues in structural
optimization problems, the reader is referred to Seyranian et al. (1994).

Design sensitivities for the eigenvalue l follow by di�erentiation of Eq. (39) and pre-multiplying the
result by vT. This gives

dl
ds
� ÿ vTK0;sv� lvTG0;sv

vTG0v
; �40�

which can be found in Haftka and G�urdal (1992) and Lund and Olho� (1994), among many others. In an
SA formulation, both K0;s and G0;s are approximated using ®nite di�erences. Note that for evaluation of
G0;s, stress sensitivities for the pre-buckling state are required.

The ®nite di�erence approximations to vTK0;sv may lead to severe inaccuracies (Van Keulen and De
Boer, 1998b). However, an improvement along the lines followed in previous sub-sections is possible. For
this reason, the individual element contributions veTKe

0;sv
e are studied. Here a decomposition of the buckling

mode at element level ve into a rigid body and a deformational component is applied. For this purpose, the
Se

0 and Fe
0 matrices are used. These matrices are de®ned in Eqs. (16) and (17), respectively. Using this

decomposition and consistency condition (33), veTKe
0;sv

e can be written as

veTKe
0;sv

e � veT 2�F
eT

0 Ke
0

�
� Fe

0Ke
0;sF

e
0

�
ve: �41�

In the RSA formulation, analytical derivatives are being used for �F
e

0, whereas Ke
0;s is approximated using

®nite di�erences. However, the latter contribution is only coupled with the deformational component of ve.
The derivatives of the geometrical sti�ness are improved indirectly, as an RSA formulation is used for

the pre-buckling solution and the associated pre-buckling stresses. An elegant RSA formulation for the
entire contribution corresponding to lveTGe

0;sv
e is lacking. However, the analytical example studied in Van

Keulen and De Boer (1998b) indicates that this term leads to less severe inaccuracies as compared to errors
associated with veTKe

0;sv
e.

4. Aspects of implementation

The objective of the present section is to illustrate that it is relatively simple to implement the RSA
method in an existing FE package. The discussion will be focused on nonlinear and linear analyses only.
The starting point will be the implementation of a framework for computing traditional SA design sen-
sitivities. Once having implemented such a scheme, the following modi®cations must be applied:
· Evaluate ®nite di�erence approximations at the element level rather than at the system level. The reason

is that consistency equation Eq. (20) can only be de®ned at the element level.
· Compute rigid body modes and corresponding derivatives for each element.
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· Evaluate fe
;s by applying Eqs. (26) or (35) instead of replacing it directly by its ®nite di�erence approx-

imation.
As the modi®cations only involve some basic vector operations, the additional computing time turns out to
be negligible.

The second item requires some elaboration. In Van Keulen and De Boer (1998a), it has been noted that
implementation of rigid body modes and their derivatives can be realized for classes of ®nite elements,
without knowing all the details of their speci®c formulation. Here, this aspect will be worked out in more
detail. In contrast to Van Keulen and De Boer (1998a), the present discussion is not restricted to the linear
case. It is mentioned, that implementation of the basis vectors and their derivatives does require changes for
the nonlinear regime. The most important being the dependence of rigid body modes on nodal degrees of
freedom.

It is assumed that the element under consideration resides in a space with three dimensions. The rigid
body modes of a single element will be considered as a function of its location in space. For the time being,
focus will be on an arbitrary material point of the element under consideration. The rigid body modes can
be described by superposition of a translational and a rotational mode. Hence, the corresponding velocity
®eld qe becomes

qe � te � xe � �x0 � ûe�: �42�

Here te represents the velocity at the origin and xe is a spin vector. Note that both te and xe are arbitrary.
The location in the undeformed con®guration of the present material point is x0 and the corresponding
displacement vector is ûe. The hat has been introduced to distinguish from nodal degrees of freedom ue. The
location x0 is, in the case of shape design variables, an explicit function of design variables. As a rigid body
motion of a single element is considered, the spin vector will be identical for all material points and equals
xe.

A simple approach to construct six independent rigid body modes is to select all components of te and
xe, but one, to be zero. In this way, the following six rigid body modes are constructed

qe
i � ei; xe

i � 0; i � 1; 2; 3;
qe

i�3 � ei � �x0 � ûe�; xe
i�3 � ei; i � 1; 2; 3:

�43�

Here ei refers to three orthonormal vectors.
These rigid body modes are the starting point for the generation of six rigid body modes, qe

i , i � 1; . . . ; 6,
in terms of nodal degrees of freedom. For this purpose, the precise de®nition of the nodal degrees of
freedom is required. In general, components of qe

i corresponding with nodal displacements can be derived
using the velocity ®eld qe. Components corresponding with nodal rotations can be obtained using the spin
vector xe.

Following Van Keulen and De Boer (1998a), a classical Schmidt orthogonalization procedure will be
applied to construct an orthogonal basis fre

kg from the modes qe
i . Of importance is the observation that it is

most convenient to start the orthogonalization procedure with translational modes. The reason for this is
that translational modes are already orthogonal and their design sensitivities equal zero. The orthogo-
nalization ®nally yields

re
k �

X6

i�1

ae
kiq

e
i ; �44�

with ae
ki being the components of re

k with respect to qe
i , which have been determined by the Schmidt or-

thogonalization. Derivatives of rigid body modes now become
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re
k;s �

X6

i�1

ae
kiq

e
i;s �

X6

i�1

ae
ki;sq

e
i : �45�

Although being nonzero, the last term on the right hand side of Eq. (45) can be omitted in the present
setting, as it will never give a contribution to the proposed RSA design sensitivities. This is easily veri®ed by
reviewing the proposed RSA design sensitivities, using de®nition (19) and realizing that Beqe

i � 0. Evalu-
ation of qe

i;s involves partial derivatives of qe
j , j � 1; . . . ; 6, which are given by

qe
i;s � 0; xe

i;s � 0; i � 1; 2; 3;
qe

i�3;s � ei � x0;s; xe
i�3;s � 0; i � 1; 2; 3:

�46�

In order to de®ne qe
j;s, j � 1; . . . ; 6 the exact de®nition of the nodal degrees of freedom has to be speci®ed.

In Van Keulen and De Boer (1998a), details on the rigid body modes and their derivatives have been
speci®ed for a 12 degrees of freedom shell element (Van Keulen and Booij, 1996). As noted that formulation
was restricted to linear analyses. With the foregoing results, extension to the nonlinear regime becomes
straightforward.

5. Examples

Several numerical examples that study the e�ectiveness of the RSA method for di�erent types of analyses
will be presented. The well-known Koiter±Roorda frame (Koiter, 1967; Roorda, 1965) is considered in
Section 5.1. RSA design sensitivities for both buckling and limit loads are compared with their traditional
SA counterparts. For further comparison, global ®nite di�erences (GFD) will be used for buckling and
nonlinear analyses. The present implementation of the GFD method for nonlinear analyses compensates
for unbalance in the nonlinear solution (Haftka, 1993). Section 5.2 deals with sensitivities for linear,
nonlinear and limit load analyses for a shallow shell roof as studied by Cris®eld (1981) and Haftka (1993),
among others. A deployable structure is subject of Section 5.3.

Results for the examples listed above are presented using logarithmic design sensitivities as functions of
the relative design perturbation Ds=s. Logarithmic design sensitivities of a quantity a can be expressed as
(Haftka, 1993)

d�log a�
d�log s� �

s
a

da
ds
; �47�

and have the advantage of being nondimensional and easy to interpret.
It was shown for the linear regime that RSA design sensitivities using forward ®nite di�erences are

generally even more accurate than SA design sensitivities based on central ®nite di�erences. Moreover, the
RSA alternative with forward ®nite di�erences is more e�cient in terms of computer time as the mesh has
to be perturbed only once. Therefore, central ®nite di�erences are not dealt with in the present article. A
study concerning SA and RSA sensitivities using both forward and central ®nite di�erences for linear
analyses can be found in Van Keulen and De Boer (1998a).

A widely used method to perturb a ®nite element mesh, is to perturb only elements that are located on a
perturbed boundary. In case a surface description is used, surface coordinates of nodes at the interior are
kept constant. Consequently, also elements at the interior of a surface get perturbed if the corresponding
surface description is a�ected by a design variable. This approach is also adopted in the present work. The
main advantage of this method is that often only a relatively small number of elements becomes perturbed.
Hence, a reduction of the computational e�ort is achieved, as ®nite di�erence approximations of element
matrices only have to be carried out for perturbed elements. A serious disadvantage concerns the relative
perturbation Ds=s. This parameter is de®ned globally, which implies that the perturbation of a particular

6972 H. de Boer, F. van Keulen / International Journal of Solids and Structures 37 (2000) 6961±6980



element is not related to its dimensions. Thus, when re®ning the mesh, while keeping Ds=s constant, the
perturbation of elements relative to their dimensions will increase. Although the above is quite obvious,
the reader should keep these considerations in mind when interpreting the numerical results presented in the
next sections.

As a ®nal remark, it is mentioned that a triangular ®nite rotation shell element is used for all numerical
examples. A description of this element can be found in Van Keulen and Booij (1996).

5.1. Koiter±Roorda frame

A simple frame structure, as shown in Fig. 1, is considered. The length L of the two beams of the frame is
chosen as the design variable. Buckling and post-buckling behaviour of this frame was studied analytically
in Koiter (1967), where in particular the in¯uence of imperfections on its post-buckling behaviour was
investigated. Those analytical results are in excellent agreement with experimental observations reported in
Roorda (1965). In the present article, the frame structure is modelled using shell elements with thickness t,
with t=L � 0:001 in the nonperturbed con®guration. The boundary conditions that have been used are
depicted in Fig. 1. An imperfection in the loading condition has been introduced by a distributed moment
m, with m=pL� 1. Due to membrane deformations in the pre-buckling solution, the ®nite element model
without imperfection (m � 0) exhibits a limit point. This is in contrast with the analytical model (Koiter,
1967) where a bifurcation point occurs. On the basis of Koiter's (1967) result, the critical load parameter
can be estimated by

kcr � 1:1572 1

�
ÿ 1:1514

�����
m
pL

r �
Et3

pL2�1ÿ m2� : �48�

Notice that here the in¯uence of membrane deformations on the pre-buckling solution are neglected. From
di�erentiation of Eq. (48) to L, the logarithmic design sensitivity follows as

Fig. 1. Geometry and boundary conditions for a perfect frame and an imperfect one. The dimensions of the frame are characterized by

t=L � 0:001, where t denotes the thickness. A load imperfection is introduced by a moment m about the connecting edge, with

m=pL � 0:001. The applied load and the moment are scaled by a load parameter k. A ®ne and a coarse mesh are used.
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L
kcr

dkcr

dL
� 0:5757

�����������
m=pL

p
1ÿ 1:1514

�����������
m=pL

p !
ÿ 2: �49�

Herewith, it can be seen that the logarithmic design sensitivity of the critical load equals ÿ2 for a perfect
frame and ÿ1:98 for the imperfect frame with m=pL � 0:001.

Design sensitivities for the linearized buckling load of the perfect frame are given in Fig. 2. It is seen that
the logarithmic derivative is approximately ÿ2, which is in agreement with its analytical value. Further-
more, RSA design sensitivities are shown to be superior to SA design sensitivities and are nearly constant
throughout the entire range of perturbations. As buckling loads are obtained by using a multi-vector it-
eration, application of the GFD method yields rather inaccurate results for smaller perturbations. Obvi-
ously, it is possible to improve the GFD results by requesting a higher accuracy in the multi-vector iteration
(currently 10ÿ3), but this seriously increases the computer time needed.

Logarithmic design sensitivities for the critical load parameter are also investigated. Formally, these
have to be evaluated at the limit point since only then Jv � 0 holds true. In practice, it turns out to be
su�cient to evaluate them rather close to the limit point. Corresponding results are presented in Fig. 3. At
the same time, e�ects related to mesh re®nement are examined. Fig. 3 shows that application of RSA
sensitivities yields a tremendous improvement as compared to SA sensitivities. The di�erence even increases
in favour of RSA sensitivities when re®ning the mesh, as their accuracy behaviour is not signi®cantly af-
fected by re®nement of the mesh. The peak in the RSA sensitivities for the ®ne mesh and DL=L � 10ÿ3 can
be explained by the fact that the relative perturbation DL=L is a global quantity. This means that if the mesh
is re®ned, the relative perturbation of the smallest element may become rather large, although DL=L is kept
constant. Furthermore, it is seen that the obtained results are in accordance with analytical results given by
Eqs. (48) and (49).

Finally, the e�ects of imperfections on logarithmic design sensitivities for the critical load parameter are
examined. Eq. (49) shows that the logarithmic design sensitivity for an imperfect frame is slightly less than
the value for a perfect frame. This can also be observed from Fig. 4, where corresponding numerical results
are presented. These results are obtained by making use of a coarse mesh, which is one of the reasons for
the di�erence between numerical and analytical design sensitivities. Another reason might be the neglected
in¯uence of membrane deformations in the analytical results. From Fig. 4 it is seen that adding an im-
perfection does not noticeably in¯uence the accuracy of RSA design sensitivities, whereas it does do so for
SA design sensitivities. The reason for this is that de¯ections for an imperfect frame at critical load level will

Fig. 2. Design sensitivities for the linearized buckling load of the perfect frame. The length L of the two beams of the frame is taken as

the design variable and a coarse mesh is used. SA, RSA and GFD design sensitivities are compared.

6974 H. de Boer, F. van Keulen / International Journal of Solids and Structures 37 (2000) 6961±6980



be much larger as compared to the perfect case, whereas the magnitude of the membrane deformations
remains comparable. Hence, the ratio between rigid body motions and deformations increases.

5.2. Shallow shell roof

A hinged shallow cylindrical shell is examined (Cris®eld, 1981; Haftka, 1993). Its geometry and
boundary conditions are depicted in Fig. 5. The dimensions used are identical to those reported in Haftka
(1993), i.e. L � 252 mm, R � 2540 mm and the thickness t equals 6:35mm. The material properties are
speci®ed as E � 3105 N/mm2 and m � 0:3. The critical load for a symmetric deformation pattern was found
to be 575:6 N. Due to symmetry, only a quarter of the roof is analysed. In this sub-section, the design
sensitivities with respect to the radius R are considered. Note, that L is kept constant. In Haftka (1993),
design sensitivities for the sizing variables t and m were examined. Although not reported here, these sen-
sitivities were also investigated and appeared to be in agreement with those given in Haftka (1993).

Fig. 3. Design sensitivities for the critical load parameter of the perfect frame. RSA and SA sensitivities are compared and the in¯uence

of mesh re®nement is considered.

Fig. 4. Design sensitivities for the critical load parameter. A perfect and imperfect (m=pL � 0:001) frame are compared using a coarse

mesh.
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Fig. 6 presents design sensitivities for the vertical displacement w at the centre of the roof. The results
correspond to a linear analysis using the mesh shown in Fig. 5. SA, RSA and GFD design sensitivities are
explored. It is observed that the accuracy of RSA design sensitivities is as good as that of GFD design
sensitivities. However, SA design sensitivities are rather inaccurate for larger design perturbations.

The design sensitivities for a nonlinear analysis are depicted in Fig. 7. These are computed at k � 500, i.e.
at about 85% of the critical load. Again, results of the RSA method are in close accordance with those of
the GFD approach and are almost constant throughout the whole range of perturbations. Note the dif-
ference between the logarithmic design sensitivity for the linear case and the nonlinear one.

Attention is also paid to design sensitivities for the critical load. The same remark as given in Section 5.1
about computing design sensitivities according to Eq. (31) holds true. Fig. 8 shows that application of the
RSA method yields the better results, i.e. they depend less on the choice of the relative design perturbation
Ds=s.

The results for the shallow shell roof clearly address the supremacy of RSA over SA design sensitivities.

Fig. 5. Geometry of shallow shell roof. Dimensions are L � 252 mm, R � 2540 mm and F � 0:25 N. Thickness t equals 6:35 mm.

Fig. 6. Design sensitivity for vertical displacement w at the centre corresponding to a linear analysis.
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5.3. Petal

During folding and unfolding, deployable structures often undergo large displacements and ®nite ro-
tations, whereas the deformations remain relatively small. Re®ned SA design sensitivities are therefore
expected to be especially useful for these type of structures. The present sub-section investigates a de-
ployable structure, namely a petal which is fully clamped at the circular hub. Eight of such petals in the
deployed con®guration form a spherical cap, with a radius R. It holds that R=r � 5:9, where r denotes the
radius of the hub. The thickness of the petal is speci®ed by t, and R=t � 100. The material properties are
given as E � 2:105 N=mm

2
and m � 0:3. The geometry and boundary conditions of the petal are presented

in Fig. 9. Both free sides of the petal are described by using the description for an ordinary line, but in terms
of spherical coordinates. The petal is loaded by a unit distributed bending moment m, which is scaled by a
load parameter k. The location of point A is controlled by the design variable /. Design sensitivities for the
displacement component in x-direction of point A are considered in the folded con®guration, which is
reached at k � 0:45.

The design sensitivities for a nonlinear analysis are presented in Fig. 10. Again, the results corresponding
to the RSA method are nearly constant throughout the complete range of relative design perturbations. On

Fig. 7. Design sensitivity for vertical displacement w at the centre for k � 500.

Fig. 8. Design sensitivities for the critical load of the shallow shell roof.
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the contrary, SA design sensitivities behave in an extremely undesired manner, which is caused by the
nature of the problem. Folding of the petal can be considered as a problem exhibiting almost inextensional
bending. Hence, the RSA approach takes full advantage of the analytical di�erentiation of rigid body
motions at the element level.

6. Discussion and conclusions

Re®ned semi-analytical design sensitivities have been constructed using rigid body modes of individual
elements and their analytical derivatives. In contrast to previous papers, here a sound and uni®ed for-
mulation is given for nonlinear, linear, limit-point and linearized buckling analyses. The starting point is a
decomposition of the contribution to the pseudo-load vector associated to internal stresses. Apart from
being a fundamental step towards improved semi-analytical design sensitivities, this decomposition also
provides a better understanding of the actual nature of errors introduced by ®nite di�erence approxima-
tions used for evaluation of the pseudo-load vector. After this decomposition has been accomplished,

Fig. 10. Design sensitivities for the displacement of point A in the x direction in the folded con®guration. SA, RSA and GFD design

sensitivities are explored.

Fig. 9. Geometry and boundary conditions of the deployed petal. The angle / is chosen as the design variable.
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consistency conditions permit elimination of certain partial derivatives, normally approximated by ®nite
di�erences. This can be done by virtue of analytical derivatives of the rigid body modes that have been
made available. Finally, in the case of a linear or a linearized buckling analysis, a decomposition of the
displacement ®eld or the buckling mode is carried out, respectively. Again, consistency equations permit
elimination of speci®c partial derivatives. For linearized buckling analyses, a decomposition of the pseudo-
load vector is not required.

Implementation of the proposed re®nements is easy, especially if compared to analytical derivatives. The
basis for an RSA implementation is identical to a standard SA implementation. A part of the additional
implementation task can be done generically. From the formulation it also becomes apparent, that the
additional e�ort in terms of computing times is very small. As an example, the RSA formulation for
geometrically nonlinear analyses is considered. The di�erences between the SA and the RSA formulation
are re¯ected by Eqs. (24) and (26). Comparing these equations, it is seen that the contribution BeT

;s re has to
be multiplied by both Se and Fe in the re®ned formulation. Moreover, these matrices have to be generated
using information on rigid body modes and their derivatives. Consequently, it is concluded that the re-
quired additional computing e�ort is negligible.

Numerical results corresponding to an RSA formulation are generally superior to results based on an SA
formulation. It is noted that the proposed re®nements are fully compatible with more advanced design
perturbation schemes and can be combined with improved ®nite di�erence schemes. As an example, the
method can be combined with higher-order ®nite di�erence schemes without any complication.

In the present article design sensitivities for geometrically nonlinear analyses have been discussed under
the assumption of a load parameter which is independent of the design variables and which is prescribed.
Without any di�culties, it is possible to adopt the RSA strategy for other types of geometrically nonlinear
analyses, for example, on the basis of arc-length control.

Obviously, if analytical derivatives of the FE matrices are available, e.g. due to the application of au-
tomated di�erentiation techniques, these exact formulations should be preferred above approximations on
the basis of ®nite di�erences.

Finally, it is recommended to give preference to an RSA formulation over an SA formulation at all
times, as the results obtained are just as good or much better, while the additional costs for implementation
and computing are minor.
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